Human tooth germ stem cell response to calcium-silicate based endodontic cements
نویسندگان
چکیده
OBJECTIVE The aim of this study was to compare the cytotoxic effects of endodontic cements on human tooth germ stem cells (hTGSCs). MTA Fillapex, a mineral trioxide aggregate (MTA)-based, salicylate resin containing root canal sealer, was compared with iRoot SP, a bioceramic sealer, and AH Plus Jet, an epoxy resin-based root canal sealer. MATERIAL AND METHODS To evaluate cytotoxicity, all materials were packed into Teflon rings (4 mmµ3 mm) and co-cultured with hTGSCs with the aid of 24-well Transwell permeable supports, which had a pore size of 0.4 µm. Coverslips were coated with MTA Fillapex, iRoot SP and AH Plus Jet and each coverslip was placed onto the bottom of one well of a six-well plate for scanning electron microscopy (SEM) analysis. Before the cytotoxicity and SEM analysis, all samples were stored at 37ºC and at 95% humidity and 5% CO2 for 24 hours to set. The cellular viability was analyzed using MTS test (3-(4,5-dimethyl-thiazol-2-yl)-5-(3-carboxy-methoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium). The cytotoxic effects and SEM visualization of the tested materials were analyzed at 24-hour, 72-hour, one-week and two-week periods. RESULTS On the 1st day, only MTA Fillapex caused cytotoxicity compared to negative control (NC) group (p<0.008). No significant difference was observed between the other tested materials at this period (p>0.05). After 14 days of incubation with the test materials, MTA Fillapex exhibited significantly higher cytotoxicity compared with iRoot SP, AH Plus Jet and the NC group (P<0.008). In the SEM analysis, the highest levels of cell attachment were observed for iRoot SP and the control group. After 24 hours, MTA Fillapex reduced the number of cells attached to the surface. CONCLUSIONS Within the limitations of this study, sealers exerted different cytotoxic effects on hTGSCs. Although all materials have exerted cellular toxicity, iRoot SP and AH Plus Jet may promote better attachment to hTGSCs.
منابع مشابه
Premixed calcium silicate cement for endodontic applications
Calcium silicate-based materials (also called MTA) are increasingly being used in endodontic applications. However, the handling properties of MTA are not optimal when it comes to injectability and cohesion. Premixing the cements using glycerol avoids these issues. However, there is a lack of data on the effect of common cement variables on important properties of premixed cements for endodonti...
متن کاملChemical Composition and Porosity Characteristics of Various Calcium Silicate-Based Endodontic Cements
Chemical composition and porosity characteristics of calcium silicate-based endodontic cements are important determinants of their clinical performance. Therefore, the aim of this study was to investigate the chemical composition and porosity characteristics of various calcium silicate-based endodontic cements: MTA-angelus, Bioaggregate, Biodentine, Micromega MTA, Ortho MTA, and ProRoot MTA. Th...
متن کاملFrom MTA to New Biomaterials Based on Calcium Silicate De MTA a nuevos biomateriales basados en Silicato de Calcio
One of the most revolutionary materials introduced in Endodontics was the Mineral Trioxide Aggregate (MTA). The investigations regarding MTA formulation allowed researchers to disclose the composition and also some clinical problems related to the clinical application of this material. The augmentation on MTA’s studies resulted in the development a new generation of Endodontic materials, the ca...
متن کاملVital pulp therapy with two different calcium-silicate cements: two cases report
It is a worthy aim to preserve the pulp vitality in teeth with immature root in order to continue the root's maturation. Traumatic injuries and caries are two main reasons for pulp exposure in immature teeth. This article describes two vital pulp therapies on two patients, a nine-year-old boy with traumatized central tooth and a 10-year-old boy with caries exposure in a premolar tooth. Both tee...
متن کاملThe Impact of Thermocycling Process on the Dislodgement Force of Different Endodontic Cements
To evaluate the effects of thermocycling (500 cycles, 5°C/55°C) on the push-out bond strength of calcium silicate based cements including WMTA, Nano-WMTA, and Bioaggregate to root dentin. Forty-eight dentin slices were prepared and divided into 3 groups (n = 16) and filled with Angelus WMTA, Nano-WMTA, or Bioaggregate. After incubation, half of the samples were thermocycled while the other half...
متن کامل